

StromNetzDC

Bürgermeistergespräch Zeitlofs 05.02.2024

Warum brauchen wir neue Gleichstromverbindungen?

Für ein klimaneutrales Netz

Ziel: Klimaneutralität bis 2045

Elektrifizierung von Industrie, Gebäude und Verkehr

Steigender Transportbedarf Nord-Süd, Ost-West

- Lange Transportaufgaben im klimaneutralen Netz
- Durch Vernetzung flexiblere Integration Erneuerbarer Energien
- Senkung von Redispatch-Kosten
- Entlastung des Wechselstromnetzes

StromNetz^{DC}: Zusammen für die Energiewende



Ziel: ein klimaneutrales Netz für Deutschland

Vier Projekte, eine Kommunikation

StromNetzDC umfasst:

- NordOstLink (DC31/DC32) TenneT/50Hertz
- OstWestLink (DC40) TenneT/50Hertz
- NordWestLink (DC41) TenneT/TransnetBW
- SuedWestLink (DC42) 50Hertz/TransnetBW

StromNetzDC

Kooperation von 50Hertz, TenneT und TransnetBW

- Informationen aus einer Hand: www.stromnetzdc.com
- Gebündelte Ressourcen und Erfahrungswerte und aus anderen Gleichstromprojekten: SuedLink, SuedOstLink, SOL+, Ultranet
- Enge Abstimmung bei Kommunikation, Technik, Planung und Genehmigung und Bau

NordWestLink (DC41) SuedWestLink (DC42) auf einen Blick

NordWestLink (DC41)

Zahlen, Daten, Fakten

2 Vorhabenträger:
TenneT und TransnetBW

SuedWestLink (DC42)

Zahlen, Daten, Fakten

2 Vorhabenträger: 50Hertz und TransnetBW

Zeitplan

Die nächsten Schritte

Planung und Genehmigung

EU-Notfallverordnung

Anwendungsbereich:

- Zeitlich: Einreichung § 19 NABEG bis 30.06.2025 möglich
- Sachlich: § 43m Abs. 1 Satz 1 EnWG (= Anwendbarkeit der EU-Notfallverordnung)

Rechtsfolgen:

- 1. Entfall der Umweltverträglichkeitsprüfung (UVP)
- 2. Reduktion des Abwägungsmaterials für die planerischen Entscheidungen im Hinblick auf die Umweltbelange
- 3. Entfall der artenschutzrechtlichen Prüfung nach § 44 Abs. 1 BNatSchG ("Zugriffsverbote")
- 4. Pflicht zur Festlegung von Minderungsmaßnahmen, um die Einhaltung der Zugriffsverbote zu gewährleisten, soweit diese geeignet, verfügbar und verhältnismäßig sind

Ziel: Beschleunigung der Verfahren

06.02,2024

Genehmigungsplanung

Nächste Schritte und Zeitplan

- Datenerhebung im Präferenzraum
- Trassierung vorl. Trasse §19 NABEG
- Methodische Grundsatzthemen mit BNetzA zu neuem Genehmigungsregime
- Ab Februar Vorstellung erste Trassen im Präferenzraum
- Parallel Erstellung der Antragsunterlagen
- Juni 2024 Einreichung Antrag auf Planfeststellungsbeschluss (§19 NABEG)

November 2023

Ermittlung Umweltauswirkungen für die SUP NEP bis Nov. 2023 16.11.2023-29.01.2024

Konsultation der SUP inkl. PräR

Februar 2024

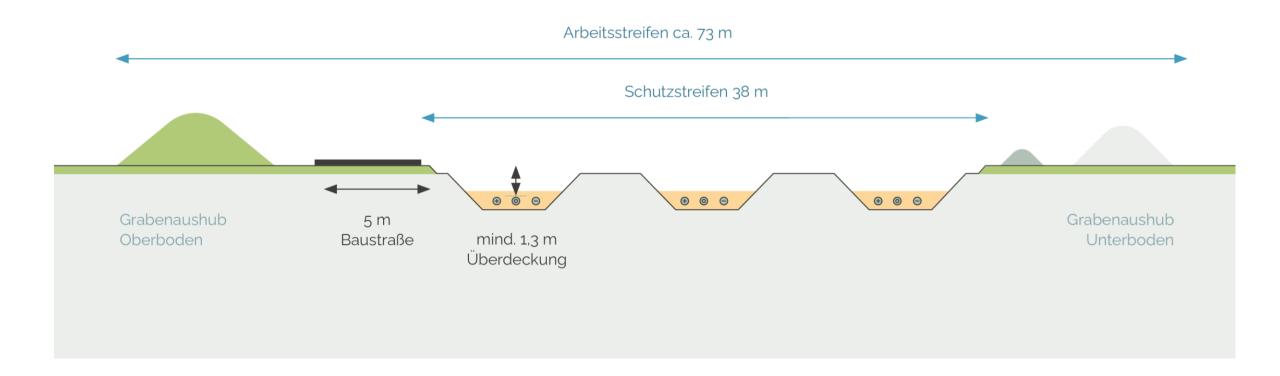
Vorstellung der Trassen im Präferenzraum

März 2024

Bestätigung NEP (Projekte)

Juni 2024

Bestätigung SUP NEP und Präferenzraum Beginn Juni 2024


Technik und Bau

StromNetz^{DC} wird als Erdkabel verlegt

Bauweise - Erdkabelverlegung

3 Systeme (+/- 525 kV)

Das +/- 525 kV-Gleichstromerdkabel

StromNetz^{DC} 50Hertz · TenneT · TransnetBW

Aufbau

Technischer Aufbau eines DC-Kabels (Gleichstromkabel)

Leiter aus Kupfer - überträgt den Gleichstrom

Innere halbleitende Schicht – macht das elektrische Feld im Kabel gleichmäßig

Kabelisolation aus thermoplastischem Elastomer – sichere elektrische Isolation des Leiters zur Umgebung

Lichtwellenleiter – dient der Kabelüberwachung

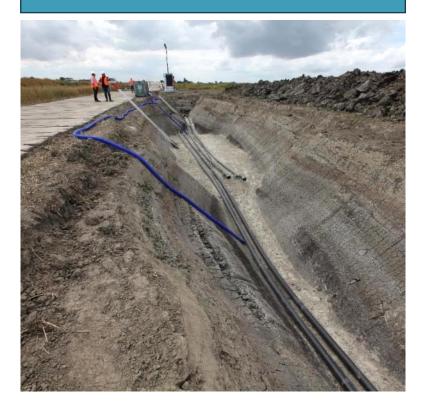
Äußere halbleitende Schicht

Wasserquellbares Band – verhindert Wasserausbreitung längs des Kabels

Aluminiummantel - schützt das Kabel vor Feuchtigkeit

Kunststoffmantel – schützt als feste Außenhülle das Kabel vor Beschädigung

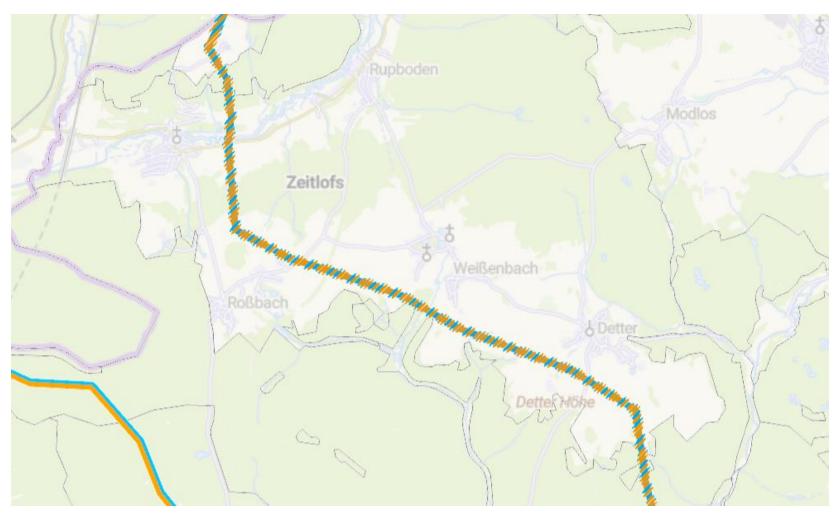
Metallischer Rückleiter


- Ggf. werden zusätzliche Kabel mit der Funktion des metallischen Rückleiters zusammen mit den Höchstspannungskabeln verlegt.
- Der metallische Rückleiter ermöglicht im Falle eines Kabelfehlers bei einem Kabel das Aufrechterhalten von Übertragungskapazität

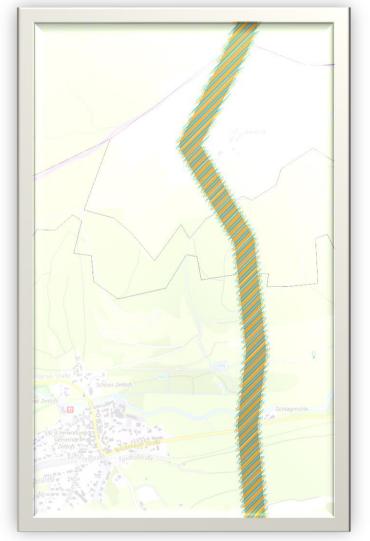
Mögliche Verlegeweisen

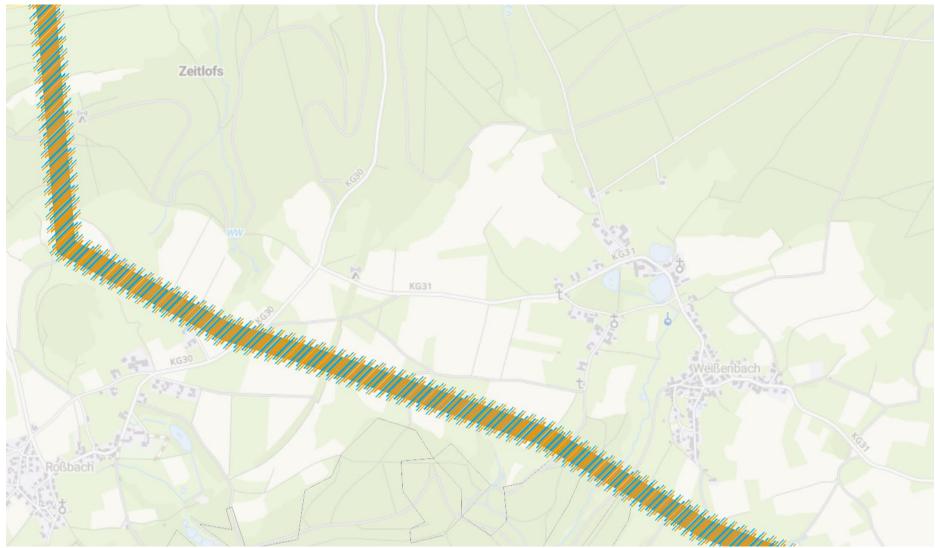
Boden- und Umweltschutz

Offene Verlegeweise



Geschlossene Verlegeweise (z.B. Horizontalspülbohrung; Microtunnel; E-Powerpipe)





Kontakt

Ihr Kontakt zu

Bayern

• Wir beantworten gerne Ihre Fragen. Sprechen Sie uns an:

Julian Erman
Referent für Bürgerbeteiligung
M +49 160 97984925
E j.ermann@transnetbw.de

Chris Göpfert
Referent für Bürgerbeteiligung
M +49 151 72930599
E c.goepfert@transnetbw.de

www.stromnetzdc.com